fractional-order legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions
نویسندگان
چکیده
in this manuscript a new method is introduced for solving fractional differential equations. the fractional derivative is described in the caputo sense. the main idea is to use fractional-order legendre wavelets and operational matrix of fractional-order integration. first the fractional-order legendre wavelets (flws) are presented. then a family of piecewise functions is proposed, based on which the fractional order integration of flws are easy to calculate. the approach is used this operational matrix with the collocation points to reduce the under study problem to system of algebraic equations. convergence of the fractional-order legendre wavelet basis is demonstrate. illustrative examples are included to demonstrate the validity and applicability of the technique.
منابع مشابه
Fractional-order Legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions
In this manuscript a new method is introduced for solving fractional differential equations. The fractional derivative is described in the Caputo sense. The main idea is to use fractional-order Legendre wavelets and operational matrix of fractional-order integration. First the fractional-order Legendre wavelets (FLWs) are presented. Then a family of piecewise functions is proposed, based on whi...
متن کاملLegendre Wavelets for Solving Fractional Differential Equations
In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...
متن کاملLegendre Wavelets for Solving Fractional Differential Equations
In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the technique.
متن کاملA Numerical Method for Solving Fuzzy Differential Equations With Fractional Order
In this paper we present a numerical method for fuzzy differential equation of fractional order under gH-fractional Caputo differentiability. The main idea of this method is to approximate the solution of fuzzy fractional differential equation (FFDE) by an implicit method as corrector and explicit method as predictor. This method is tested on numerical examples.
متن کاملA Fuzzy Power Series Method for Solving Fuzzy Differential Equations With Fractional Order
In this paper a new method for solving fuzzy differential equation with fractional order is considered. The fuzzy solution is construct by power series in the Caputo derivatives sense. To illustrate the reliability of method some examples are provided. In this paper a new method for solving fuzzy differential equation with fractional order is considered. The fuzzy solution is construct by power...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
computational methods for differential equationsجلد ۵، شماره ۲، صفحات ۱۱۷-۱۴۰
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023